난자특이발현 유전자인 Diva의 난소암세포주에서의 기능에 대한 연구

Ji Hye Woo

Department of Biomedical Science, CHA University, Seoul, Republic of Korea Lab. of Molecular Reproductive Physiology Professor. Kyung-Ah Lee

Background - What is Diva ?

Diva (Bcl2l10, Bcl-b, Boo)

- Bcl2 family proteins are characterized by the presence of one or more conserved domains called BH (for 'BCL2 homology') domains (BH1–4).
- B cell lymphoma-2 (BCL2) family proteins are key regulators of the apoptotic process.
- Diva is encoded by this gene belongs to the BCL-2 protein family.
- Diva has contradictory functions (as anti- or pro-apoptotic regulators) in apoptosis.

Bcl-2 Family

Background - Diva is essential for oocyte maturation

Diva RNAi

(Yoon et al., 2009)

We conducted the study to investigate the downstream genes of Diva in the oocytes by using microarray analysis.

Genes Gene titles Fold changes TPX2, microtubule-assosiated protein Tpx2 -16.1 homolog(Xenopus laevis) Rbm12b RNA binding motif protein 12B -15.3 Protein tyrosine phosphatase 4a1-like Ptp4a1 -14.6 Ranbp2 RAN binding protein 2 -10.1 Eeal Early endosome antigen 1 -9.3 Arid4a AT rich interactive domain 4A (RBP1-like) -9.1 Cep192 Centrosomal protein 192 -8.2 Kif20b Kinesin family member 20B -7.9 -7.8 Psip1 PC4 and SFRS1 interacting protein 1 ATPase family, AAA domain containing 2B Atad2b -7.5

genes down-regulated more than 2 folds by Diva RNAi

Background - Diva is a key regulator of Aurora A in oocytes

Background - Aurora kinase A is cancer therapy target as oncogene

Aurora kinase A

- Overexpression of Aurora A is common in many types of solid tumor.
- Aurora A is associated with chromosomal instability, aneuploid, supernumerary centrosomes, multipolar spindle.
- These properties have led Aurora A to be considered a high value target for development of cancer therapeutics.

Objectives

- To determine the regulatory role of Diva on Aurora A expression in cancer cells.
- To investigate the effects of Dive RNAi on the characteristics of cancer cells.

Result 1. Tissue Microarray data showed that Diva protein expressed in various human cancer tissues

Stomach (adenocarcinoma)

Liver (hepatocellular carcinoma) Ovary (clear cell carcinoma)

Rectum (adenocarcinoma)

Result 3. Diva regulated translation but not transcription of Aurora A in SKOV3 cancer cells

Β.

- Diva has known as a member of Bcl-2 family and has a critical role in apoptosis regulation (Adams & Cory 1998; Song et al., 1999).
- It has been reported that Diva, a novel anti-apoptotic member of the Bcl-2 family, blocks apoptosis (Zhang et al., 2001).

Hypothesis : Silence of Diva may change apoptosis rate in SKOV3.

• Previous studies have shown that Aurora A may regulate cell cycle progression during the G2-M transition (Ouchi M et al., 2004; He L et al., 2008).

Hypothesis : Diva knockdown may affect cell cycle in SKOV3.

Result 5. Diva silencing reduced cell cycle progression

	Non-Targeting siRNA	Diva siRNA
Rb		-
B1	-	-
K 1		-
lin	-	-

Result 6. Diva knockdown reduced cell viability in SKOV3 cancer cells.

Result 7. The number of invaded and migrated cells were reduced after Diva knockdown

Summary

- Diva was expressed in a various human cancer tissues.
- We firstly confirmed that Diva, as an upstream regulator, regulated translation, but not transcription, of Aurora A in SKOV3 ovarian cancer cells.
- Diva knockdown did not affect apoptosis but reduced cell cycle progression in SKOV3 ovarian cancer cells.
- Diva knockdown also reduced a viability and the number of invaded and migrated SKOV3 ovarian cancer cells.

Conclusions

- Diva is an upstream regulator of Aurora A in abnormal mitosis of cancer cells as well as in meiosis of oocytes.
- Diva knockdown inhibited the various functions of cancer cells, suggesting that Diva may act as an oncogene, and may also be a potential therapeutic target for ovarian cancer.

Acknowledgments

Thank You

Lab Members:

Kyeoung-Hwa Kim, PhD

Seong-Hee Ko, PhD

Jinie Kwon, MS

Eun-Young Kim, MS

•Su Yeon Lee, PhD candidates