
Pluripotent state of porcine embryonic germ cells is modulated by culture conditions

Seoul National University Lab. of Animal Reproduction and Transgenesis.

Choi, Kwang-Hwan

Naïve and Primed pluripotent state

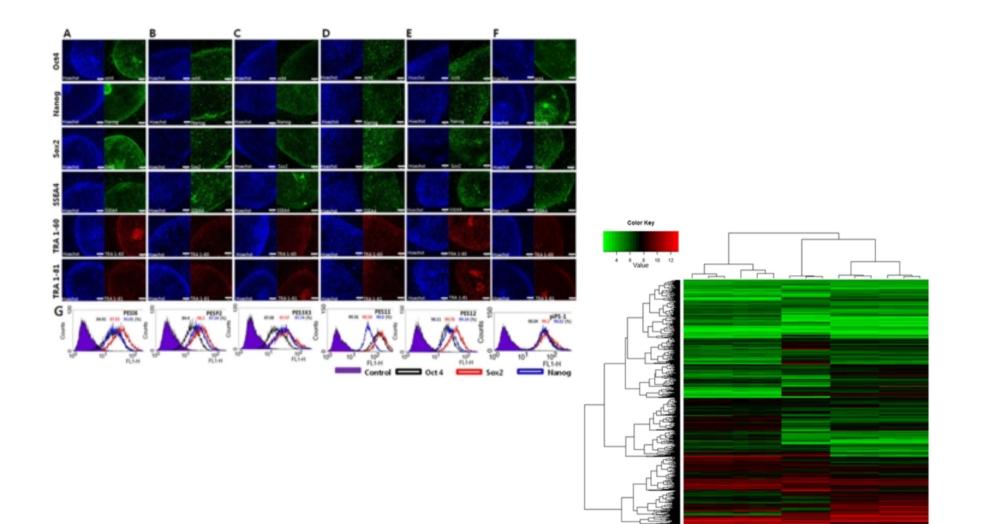
Hanna et al., 2010

SNILAR&T

Naïve and Primed pluripotent state

					Table 1. Comparison	of Naive and Primed	Pluripotent States
stable cell type					Property	Ground State	Primed State
					Embryonic tasue	early epiblast	egg cylinder or embryonic disc
2000 Saturnale stera celle	<u>}</u> }				Culture stem cell	rodent ESCs	rodent Epi8Cs; primate "ESCs"
ox.	s)Murtara sat				Blastocyst chimaeras	yes	10 ⁴
tellas sten/ceñs		n a K orona	u nu nu na		Teratomas	yes	yes
					Differentiation bias	none	variable
EXeCx Energy coid stars occes					Pluripotency factors	Oct4, Nanog, Sox2, KR2, KR4	OcH, Sox2, Nanog
					Naive markers ^b	Rex1, NrOb1, FgH	absent
5629C					Specification markers	absent	Fg65, T
Speningebol gere 👘 🗧					Response to UNStat3	self-renewal	none
sign della internationality and a second					Response to Fgt/Erk	differentiation	self-renewal
:				3866	Clonogenicity	high	low
1950-c			9446	9689	XX status	XaXa	3020
astroned randomilant				a a	Response to 2	self-renewal	differentiation/death
	r ^{asia} n, an	and a character	The second	ao'/**	*Not applied to primate	cels.	
	(¹⁰ 111 ¹⁰ 7,)	- magazine	8008		*Representative examples.		

SNU AR&



Pluripotent stem cells in pigs

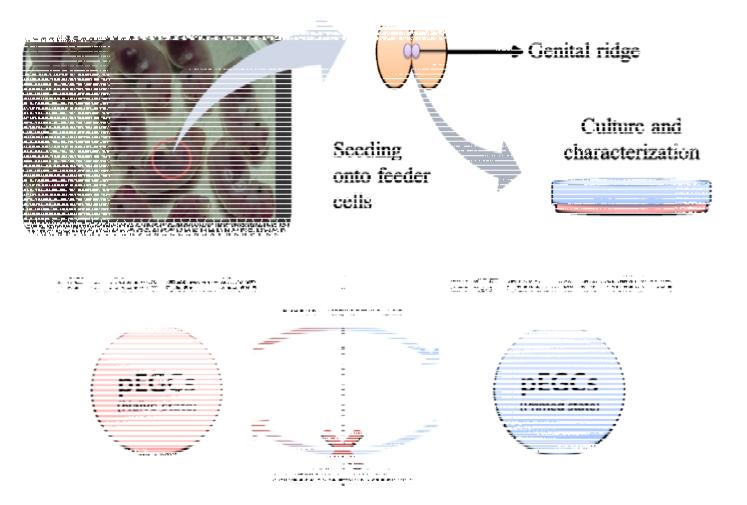
References	Embryo Source	Passage Number	Remarks
Piedrahita et al. (1990)	In vivo blastocysts day 7–8	>32 passages	ES- and epithelial-like morphology; epithelial-like cells expressed cytokeratin 18; EB formation; differentiation into vesicular structures
Anderson et al. (1994)	In vivo blastocysts day 6–10	10 passages	ES-like cells; establishment of ES-like cell lines greater for day 10 embryos, but they readily differentiated into epithelial-like cells, fibroblasts and cardiac muscle; no Chimera
Moore and Piedrahita (1996, 1997)	In vivo blastocysts day 7	4 day culture	Two morphologies: nonepithelial and epithelial-like cells; AP positive; cytokeratin negative
Li et al. (2003)	In vivo blastocysts day 7–9 minipigs	6 passages	Mouse ES-like cells; AP positive; EB formation; differentiation into neuron-like, smooth muscle, and epithelium-like Cells
Li et al. (2004)	In vitro 4-cells to blastocysts	4 passages	ES-like cells derived only from blastocysts; AP positive; EB formation; differentiation into fibroblasts and neurons
Brevini et al. (2005)	In vitro parthenogenetic blastocysts day 6	32 passages	Circular colonies with distinct margins of small round cells; EB formation; three colonies expressed OCT4, NANOG, and were negative for differentiation markers
Vackova and Madrova (2006)	In vivo blastocysts day 6–7	19 passages	Colonies expressed OCT4 and NANOG
Kim et al. (2007)	In vitro, parthenogenetic, and NT blastocyst	5 passages	Colonies with typical morphology of mouse ES-cells; expressed AP; EB formation; spontaneous differentiation; more primary colonies were formed from IVF and NT than parthenogenetic blastocysts
Alberio et al. (2010)	In vivo blastocyst day 10.5–12	12 passages	Flat. compact colonies: SSEA-1 expression: normal karyotype: OCT4, NANOG, SOX2, and NODAL expression, AP and REX1 negative: E8 formation: spontaneous differentiation into cells of three somatic germ layers
Vassiliev et al. (2010)	In vitro blastocysts day 7 and in vivo blastocysts day 6	14 passages	Polygonal shape morphology, two cell lines from in vivo blastocysts and four from in vitro blastocysts; expressed OCT4, NANOG, and SSEA-1; stable karyotype; EB formation; differentiation into cell types representative of all thee germ layers

Pluripotent stem cells in pigs

Park et al., 2013

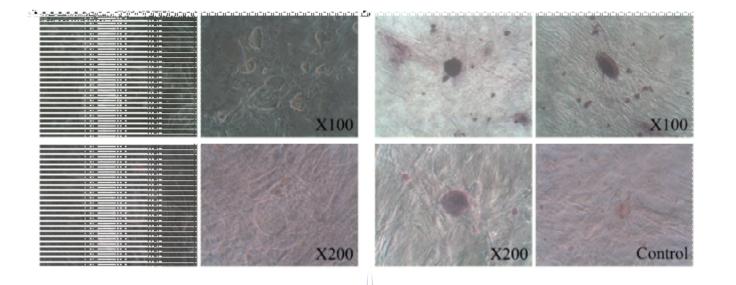
had by

Tana Cana


This Study aims to ...

1. Derive a porcine embryonic germ cell line.

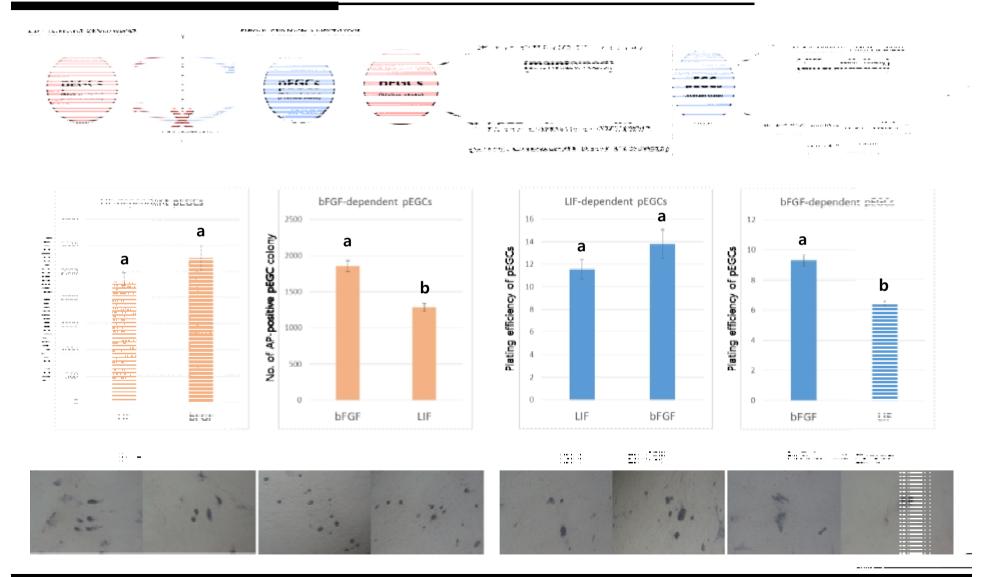
2. Characterize a pluripotent state of pEGCs.

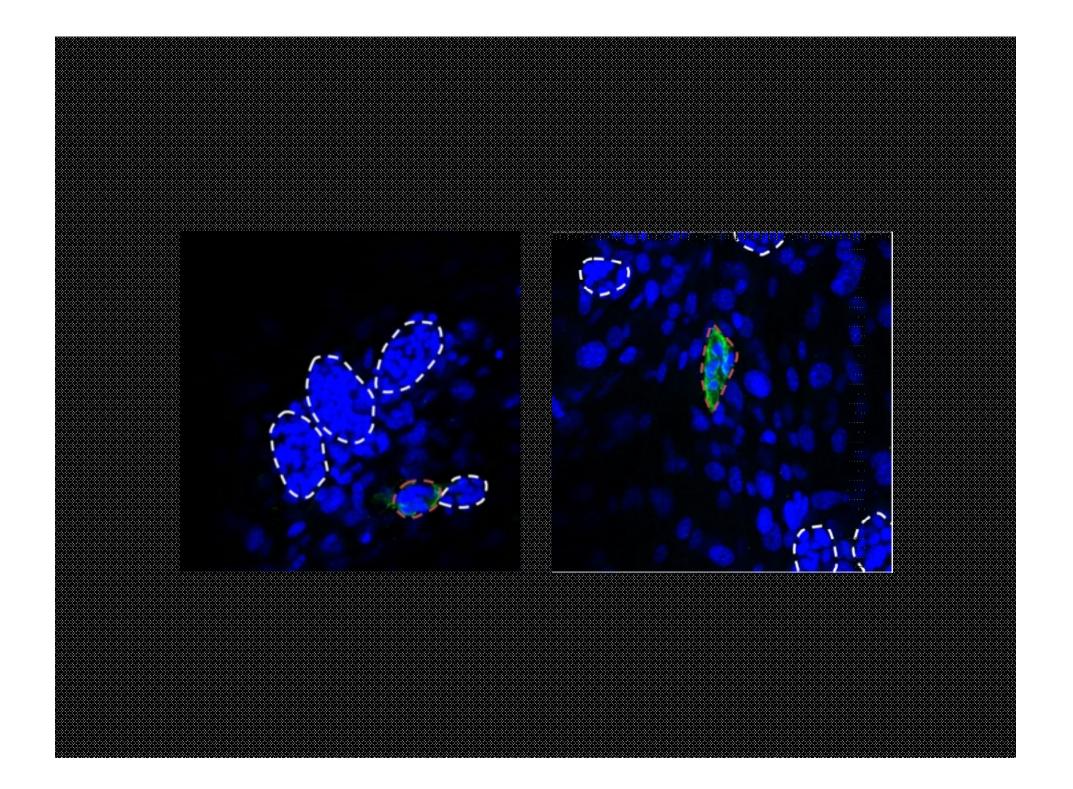

Experimental scheme and Hypothesis

SNILAR&T

Porcine embryonic germ cells

+LIF

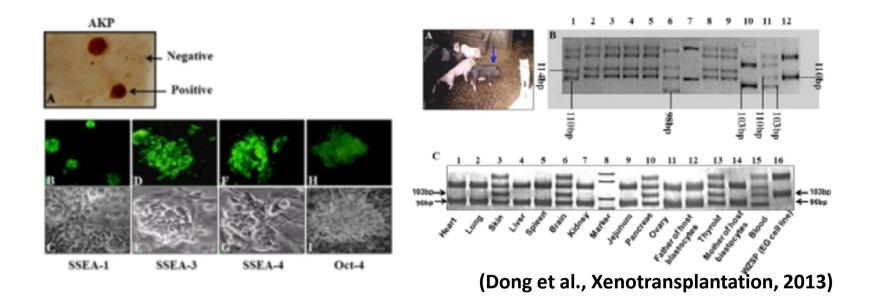




Effects of culture conditions

X chromosome inactivation

n market of the Construction of the second state of the second sta		$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$


Conclusion

1. we were able to successfully derive embryonic germ cells from genital ridges of a porcine fetus.

2. In LIF supplement, pEGCs showed naive-pluripotency expressing SSEA1, while pEGCs show primed-pluripotency expressing SSEA4 in bFGF condition.

3. two cell lines showed fully methylated pattern similarly in XIST promoter regions.

Standard of Naïve pluripotent state in pig study.

Generation of transgenic animals

- Bioreactor, Xenotransplantation, disease model, disease-resistance animal

SNII AD

2014 한국발생생물학회 일반연제

Thank You !