

2012년 한국발생생물학회 제31차 학술대회

The Effect of Coactivator-associated Arginine Methyltransferase 1 (CARM1) Protein on Differentiation Potential of Human Mesenchymal Stem Cells

CHA 의과학대학교 의생명과학과

조 중 현

BACKGROUND

Mesenchymal stem cells(MSCs)

A. Promising tool for cellular therapy in clinical use

- Proliferative capacity
- Ability to differentiate into multiple lineages
- Ability to migrate into target organ
- **B.** The weak point of hMSCs for clinical applications
 - Inferior plasticity to embryonic stem cells
 - Replicative senescence
 - Decreasing of differentiation potential during *in vitro* culturing

Critical to develop methods that improve the differentiation potential of hMSCs

BACKGROUND (continue)

Differentiation potency of hMSC correlate epigenetic regulation

A. Epigenetic regulation

- DNA methylation
- Histone acetylation
- Histone methylation

DNA methylation of the *Trip10* promoter accelerates mesenchymal stem cell lineage determination

Shu-Huei Hsiao^{a,1}, Kuan-Der Lee^{b,1}, Chia-Chen Hsu^a, Min-Jen Tseng^a, Victor X. Jin^c, Wei-Sheng Sun^a, Yi-Chen Hung^a, Kun-Tu Yeh^d, Pearlly S. Yan^e, Yen-Yu Lai^f, H. Sunny Sun^g, Yen-Jung Lu^h, Yu-Sun Chang^h, Shaw-Jenq Tsai^f, Tim H.-M. Huang^e, Yu-Wei Leu^{a,*}

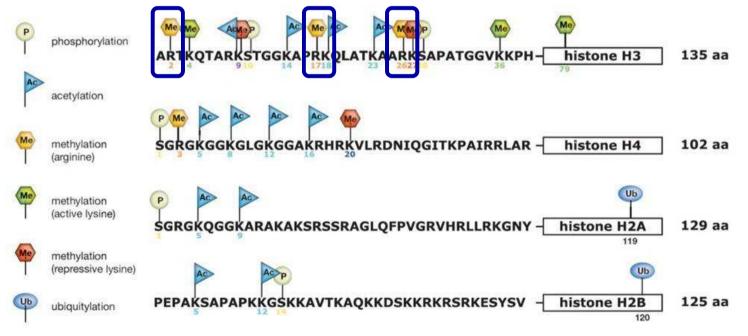
Biochem Bioph Res Co (2010)

Histone deacetylase inhibitors decrease proliferation potential and multilineage

differentiation capability of human mesenchymal stem cells

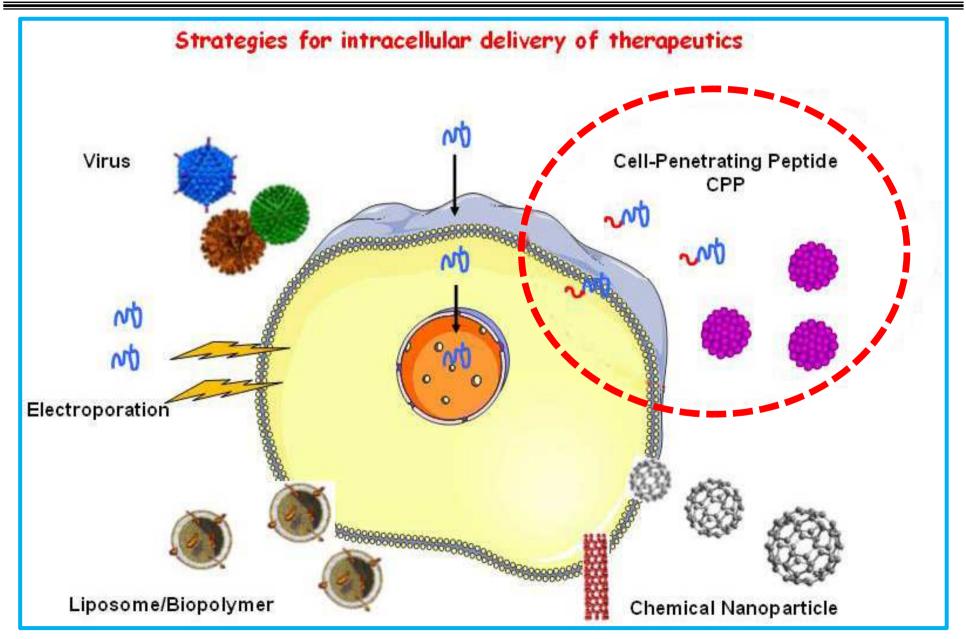
```
S. Lee*'†‡'§, J-R. Park*'†, M-S. Seo*'†§, K-H. Roh*'†§, S-B. Park*'†'§, J-W. Hwang*'†, B. Sun*'‡, K. Seo*'§, Y-S. Lee*'†‡'§, S-K. Kang<sup>¶</sup>, J-W. Jung*'‡ and K-S. Kang*'†‡'§
```

Cell Proliferation (2009)


Histone H3 Modifications Associated With Differentiation and Long-Term Culture of Mesenchymal Adipose Stem Cells

Agate Noer, Leif C. Lindeman, and Philippe Collas

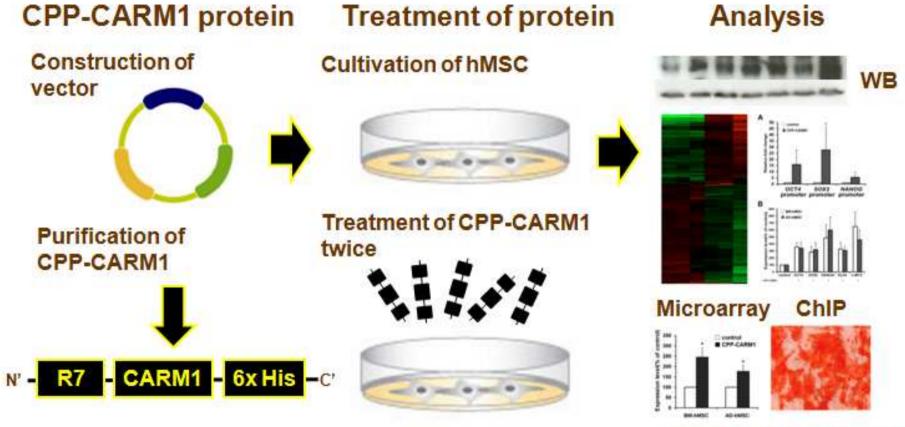
Coactivator-associated arginine methyltransferase 1 (CARM1)


- A. One of arginine methyltransferase (PRMT) family
 - Methyl group addition : <u>Histone H3 Arg-2, -17, -26</u>
 - Chromatin remodeling
 - Coactivation for many nuclear receptors, and transcription factor

Allis et al., Epigenetics. (2006)

BACKGROUND (continue)

PURPOSE



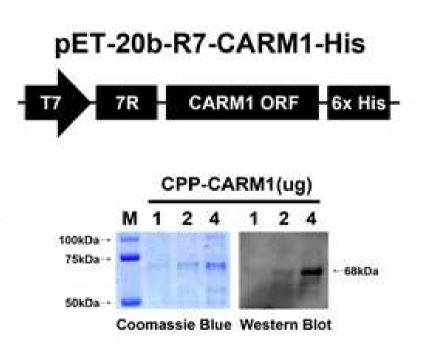
The aim of this study was

- A. Establishment of protein direct delivery system
 - To examined that CPP-CARM1 is delivered to appropriate location in nucleus and CPP facilitate cellular uptake of CARM1
 - To transfer methyl group to histone H3 arginine 17 residue by the recombinant CPP-CARM1 *in vitro* culture system of hMSCs
- **B.** Overcome a weak point of hMSCs for clinical applications
 - To increase to efficacy of differentiation into multilineage of hMSCs, according to methylation of histone H3R17 by CPP-CARM1

PROCEDURE

qRT-PCR Differentiation assay

A. CPP-CARM1 vector construction


- Used pET expression vector
- 5'-7x arginine- cDNA CARM1-6x His-taq-3'

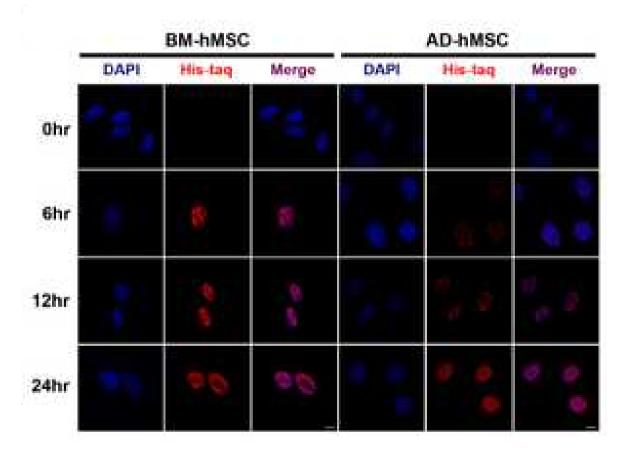
B. Western blot of CPP-CARM1 protein

- Antibody : CARM1

RESULTS

- Protein size : 68kDa

Jo et al., Stem Cells. (2012)

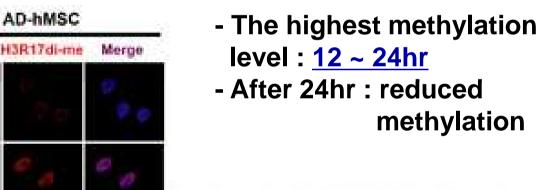


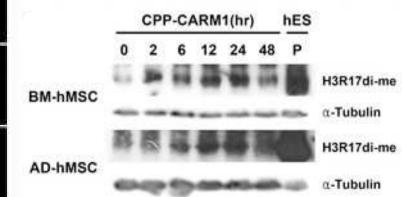
RESULTS (continue)

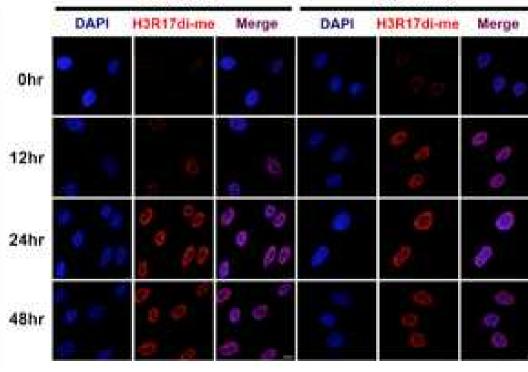
C. Localization of CPP-CARM1 in hMSCs

- Immunocytochemistry
- Antibody : 6x His-taq
- BM, AD-hMSC
- 6hr : cytoplasm and nucleus
- <u>12hr</u> : nucleus
- 24hr : nucleus

Jo et al., Stem Cells. (2012)


RESULTS (continue)

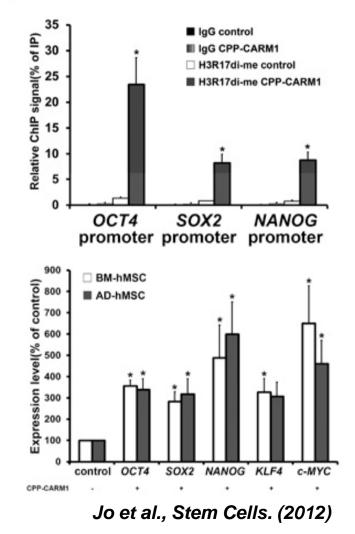

A. Methylation of CPP-CARM1 in hMSCs

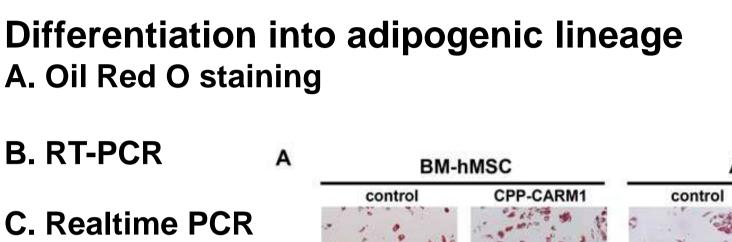

- Immunocytochemistry, Western blot
- Antibody : <u>H3R17di-me</u>

BM-hMSC

- BM, AD-hMSC

RESULTS (continue)

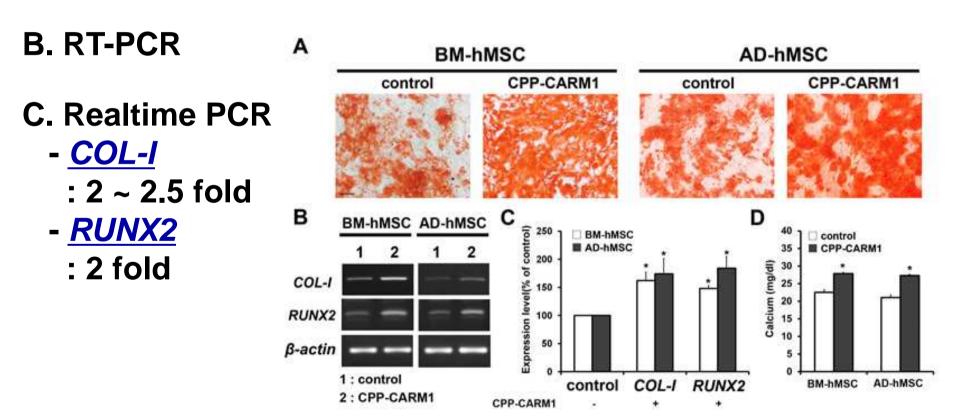



Alteration of gene expression level

A. Chromatin Immunoprecipitation (ChIP) assay

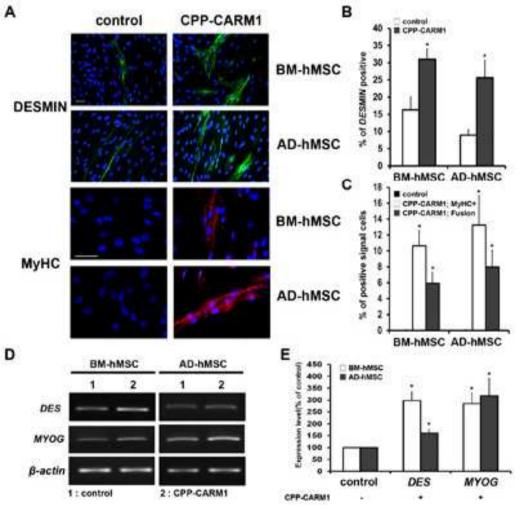
- pluripotent-related genes promoter
 - : OCT4, SOX2, NANOG promoter

- **B.** Realtime RT-PCR
 - pluripotent-related genes
 - : OCT4, SOX2, NANOG, KLF4, c-MYC



RESULTS (continue)

Differentiation into osteogenic lineage A. Alizarin Red S staining



Jo et al., Stem Cells. (2012)

Differentiation into myogenic lineage

- A. Immunocytochemistry^A
 - DESMIN
 - Myosin Heavy Chain
- **B. RT-PCR**
- C. Realtime PCR
 - <u>DESMIN</u>
 - : 1.5 ~ 3 fold
 - <u>MYOGENIN</u>
 - : 3 fold

Jo et al., Stem Cells. (2012)

- 1. Successfully purified CPP-CARM1 with biological activity
- 2. Establishment of a protein direct delivery system using cell-penetrating peptide
- 3. CPP-CARM1 protein translocalized within 12hr, and highly methylated on H3R17 at 12 ~ 24hr in hMSCs
- 4. Alteration of gene expression pattern by histone modification
- 5. Elevated the differentiation abilities of hMSCs

ACKNOWLEDGMENTS

Lab. of Germ Cell and Cryobiology Professor. Dong Ryul Lee

Present Students Dong-Won Seol Ningjie Yang Sara Choi Soo Min Hong Hyun Mee Jang

Sungshin Women's University Prof. Yong-Pil Cheon

CHA University

Prof. Haengseok Song Prof. Sang Gyu Park Prof. Soo-Hong Lee Prof. Jung-Jae Ko

Stem Cells

Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics

Regulation of Differentiation Potential of Human Mesenchymal Stem Cells by Intracytoplasmic Delivery of Coactivator-Associated Arginine Methyltransferase 1 Protein Using Cell-Penetrating Peptide

JUNGHYUN JO,^a HAENGSEOK SONG,^a SANG GYU PARK,^a SOO-HONG LEE,^a JUNG-JAE KO,^a JONG-HYUK PARK,^b JAEMIN JEONG,^c YONG-PIL CHEON,^b DONG RYUL LEE^{a,d}

Jo et al., Stem Cells. 30:1703-1713. (2012)

Korea Institute of Radiological & Medical Science Dr. Jaemin Jeong